
3-November-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Quiz #2

● Space partitioning
• Uniform grids
• Hierarchical grids
• Quadtrees / Octrees
• k-d trees
• Tree traversal

● Assignment #3

3-November-2007 © Copyright Ian D. Romanick 2007

Space Partitioning Overview
BVs and BVHs reduce comparison costs.

● Collision comparisons

● Visibility comparisons

● etc.

3-November-2007 © Copyright Ian D. Romanick 2007

Space Partitioning Overview
BVs and BVHs reduce comparison costs.

● Collision comparisons

● Visibility comparisons

● etc.

Space partitions reduce search costs
● Find all objects near another object

● Find all objects inside the view frustum

● Find all objects along a ray

● etc.

3-November-2007 © Copyright Ian D. Romanick 2007

Uniform Grid
Divide the world into fixed size, uniform regions.

Store each object in the bucket for each region
that it overlaps.

What is the most important parameter of the
grid?

3-November-2007 © Copyright Ian D. Romanick 2007

Cell Size
Too big → too many objects in each cell

Too small → each object overlaps many cells

Too big and too small → if the size of objects
varies a lot, large objects may overlap many
cells while lots of small objects are in a single
cell

3-November-2007 © Copyright Ian D. Romanick 2007

Grid Representation
Obvious implementation: m-by-m-by-m array of

linked lists.
● Divide each coordinate by the cell size to find the

array element, search the array for the desired
object.

Problems?

3-November-2007 © Copyright Ian D. Romanick 2007

Grid Representation
Obvious implementation: m-by-m-by-m array of

linked lists.
● Divide each coordinate by the cell size to find the

array element, search the array for the desired
object.

Problems?
● Worst case search time is O(n).

● If m is large, can use a lot of memory.
• Even worse, many of the lists might be empty!

3-November-2007 © Copyright Ian D. Romanick 2007

Grid Hash Table
Use smaller array to store buckets.

● Divide coordinates by grid size (like before)

● Use a hash function on the grid coordinates

● Find the object at the bucket specified by the hash
value

Problems?

3-November-2007 © Copyright Ian D. Romanick 2007

Grid Hash Table
Use smaller array to store buckets.

● Divide coordinates by grid size (like before)

● Use a hash function on the grid coordinates

● Find the object at the bucket specified by the hash
value

Problems?
● Good hash functions for grid data are hard to make

● Usual collision handling problems

3-November-2007 © Copyright Ian D. Romanick 2007

Static Data Optimization
 If all data is static store objects in a large array

● Group the objects in the array so that objects in the
same sell are together in the array

● In each cell store the index of the first object and
the number of objects.
• This works with both the previous representations

Saves storage space, but does not help search
time.

3-November-2007 © Copyright Ian D. Romanick 2007

Implicit Grids
Store an array of n lists for each axis.

● Objects are placed the lists for the regions of each
axis that they overlap.

● Uses n+m+p buckets instead n×m×p

3-November-2007 © Copyright Ian D. Romanick 2007

Grid Element Selection
No matter how big the grids are, an object can

overlap 4 elements.
● How do we decide where to store the object?

3-November-2007 © Copyright Ian D. Romanick 2007

Grid Element Selection
No matter how big the grids are, an object can

overlap 4 elements.
● How do we decide where to store the object?

Make the cells just larger than the largest object
● Each object can only overlap 4 cells (8 cells in 3D)

Place each object in the cell that its minimum
corner lies in.

3-November-2007 © Copyright Ian D. Romanick 2007

Uniform Grid ObjectObject Intersection
Since each object can overlap 4 cells:

● Test the four cells that the object might overlap

● Test the five cells that might contain objects that
overlap the cells the original object might overlap.

Some tests can be avoided if
the test object doesn't overlap
all 4 cells.
● If all objects are being tested,

only the 4 cells each object
overlaps need testing.

3-November-2007 © Copyright Ian D. Romanick 2007

Hierarchical Grids
Fixed number of levels in the hierarchy

Cells in level n+1 are usually half the
dimensions of cells in level n.
● Sound familiar?

3-November-2007 © Copyright Ian D. Romanick 2007

Hierarchical Grids
Fixed number of levels in the hierarchy

Cells in level n+1 are usually half the
dimensions of cells in level n.
● Sound familiar? Like mipmaps, perhaps?

Store objects at the level in the tree where the
cell size is just larger than the object size
● This gives the 4-cell overlap property.

3-November-2007 © Copyright Ian D. Romanick 2007

Hierarchical Grid ObjectObject Intersection
Object-object intersection tests requires

checking all cells (up and down) in the
hierarchy that the object might intersect.
● If all objects are being tested, only the current level

and the larger-cell levels need be tested.

3-November-2007 © Copyright Ian D. Romanick 2007

Quadtrees
2D tree hierarchy

● Start with the axis-aligned bounding square.
• Must be a square, not a general AABB

● Subdivide along each axis into four subsquares.

● Repeat subdivision process on each subsquare
until:
• A predefined maximum level is reached
• The square contains fewer the some threshold number of

points / objects.

● http://www.cs.wustl.edu/~suri/cs506/projects/quad.html

http://www.cs.wustl.edu/~suri/cs506/projects/quad.html

3-November-2007 © Copyright Ian D. Romanick 2007

Octrees
3D extension of quadtrees.

● Start with axis aligned bounding cube.

Octrees are a great structure, but...
● Can be major memory hogs

• Complete 10-level tree >150 million nodes

● Traversal can be tricky

● Objects must be carefully assigned to nodes

3-November-2007 © Copyright Ian D. Romanick 2007

kd Trees
Cousins of octrees and BSP trees.

Each node in the tree picks an axis to split
along.
● If the selection axes are the X/Y/Z axes, three levels

of a k-d tree are like one level of an octree.

● Each node can pick any axis to split along.
• Care must be taken to prevent the subspaces from being

to “oblong” (a.k.a., thin)

3-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.cs.cmu.edu/~awm/animations/kdtree/

● Links to more animations and other resources.

http://en.wikipedia.org/wiki/K-d_tree

● The wikipedia entry is very good.

http://www.cs.cmu.edu/~awm/animations/kdtree/
http://en.wikipedia.org/wiki/K-d_tree

3-November-2007 © Copyright Ian D. Romanick 2007

Raybased Tree Traversal
Given a partitioning scheme, how can we visit

all nodes along a line?

3-November-2007 © Copyright Ian D. Romanick 2007

Raybased Tree Traversal
Given a partitioning scheme, how can we visit

all nodes along a line?

For quadtrees, octrees, and k-d trees, it's fairly
simple.
● Use line equation

● Calculate t where the splitting planes intersect line.

● If 0 ≤ t < t
max

, search the node on that side of the

split.

● Repeat until no nodes are in range (or you reach
the leaf nodes).

S t =Atd

3-November-2007 © Copyright Ian D. Romanick 2007

Raybased Grid Traversal
Much like drawing anti-aliased lines.

● Need to visit every cell intersected, not just the ones
“most” intersected.

3-November-2007 © Copyright Ian D. Romanick 2007

Raybased Grid Traversal (cont.)
Can calculate the distance to the next x-

boundary (tx) intersection and the next y-
boundary (ty) intersection.
● The closest intersect determines which neighbor

cell to visit next.

● At each step add tx to tx or ty to ty and subtract
from the other delta.

 tx=M dx2dy2

dx

tx=xmax−xinitial
dx2

dy2

dx

3-November-2007 © Copyright Ian D. Romanick 2007

Next week...
BSP trees, part 1

Assignment #3, part 1 due

3-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

